In-Situ High-Resolution Transmission Electron Microscopy Investigation of Overheating of Cu Nanoparticles
نویسندگان
چکیده
Synthesizing and functionalizing metal nanoparticles supported on substrates is currently the subject of intensive study owing to their outstanding catalytic performances for heterogeneous catalysis. Revealing the fundamental effect of the substrates on metal nanoparticles represents a key step in clarifying mechanisms of stability and catalytic properties of these heterogeneous systems. However, direct identification of these effects still poses a significant challenge due to the complicacy of interactions between substrates and nanoparticles and also for the technical difficulty, restraining our understanding of these heterogeneous systems. Here, we combine in situ high-resolution transmission electron microscopy with molecular dynamics simulations to investigate Cu nanoparticles supported on graphite and Cu2O substrates, and demonstrate that melting behavior and thermal stability of Cu nanoparticles can be markedly influenced by substrates. The graphite-supported Cu nanoparticles do not melt during annealing at 1073 K until they vanish completely, i.e. only the sublimation occurs, while the Cu2O-supported Cu nanoparticles suffer melting during annealing at 973 K. Such selective superheating of the Cu nanoparticles can be attributed to the adsorption of a thin carbon layer on the surface of the Cu nanoparticles, which helps guide further stability enhancement of functional nanoparticles for realistic applications.
منابع مشابه
Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED
Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...
متن کاملEx-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED
Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...
متن کاملCharacterization of In-Situ Cu–TiH2–C and Cu–Ti–C Nanocomposites Produced by Mechanical Milling and Spark Plasma Sintering
This study focuses on the fabrication and microstructural investigation of Cu–TiH2–C and Cu–Ti–C nanocomposites with different volume fractions (10% and 20%) of TiC. Two mixtures of powders were ball milled for 10 h, consequently consolidated by spark plasma sintering (SPS) at 900 and 1000 ◦C producing bulk materials with relative densities of 95–97%. The evolution process of TiC formation duri...
متن کاملTEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment
Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to ...
متن کاملSimple Precipitation Synthesis of Pure Cu3V2O8 Nanoparticles and Investigation of their Optical Properties
Copper vanadate nanostructures were prepared via ex-situ precipitation approach in presence of Schiff-base ligand (N,N׳ -buthylenebis(acetylacetone iminato)dianion = acacbn) as a new capping agent. The effect of different Cu sources and pH on the size, morphology and size distribution of copper vanadate nanostructures was investigated. The as-prepared products were characterized using X-ray dif...
متن کامل